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Viscosity of bimodal and polydisperse colloidal suspensions
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We present a theoretical framework for the viscosity of bimodal and polydisperse colloidal suspensions. For
colloidal dispersions both interparticle forces between pairs of particles and many-particle effects such as
depletion forces can have a significant effect on rheology. As hydrodynamic interactions are also important for
colloidal systems, a theoretical description that includes hydrodynamic and thermodynamic interactions is
required. An integral equation theory for multicomponent systems accounts for the contribution of thermody-
namic interactions to the viscosity of dispersions. Introduction of small particles into a system of larger
particles causes depletion forces between the large particles that increase the viscosity, while replacing large
particles with an equal volume fraction of small particles increases the free volume in the system and decreases
the viscosity. The integral equations model both of these effects in concentrated suspensions and provide a
microscopic interpretation of free volume changes as changes in radial distribution functions. For a bimodal
mixture they predict a dependence of the viscosity on size ratio, composition, and total volume fraction.
Polydispersity is modeled by a small number of components whose sizes and weights are chosen to match the
moments of the size distribution. This theory predicts a reduction in viscosity due to polydispersity and
explains conflicting experimental measurement of the viscosity of hard-sphere colloids. Existing theoretical
approaches that neglect the multiparticle correlations, included through the integral equations, yield qualita-
tively incorrect results for the change in the viscosity relative to monodisperse systems.
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[. INTRODUCTION paper presents results for the hard-sphere potential only, al-
though the theory is applicable to any interparticle potential.
One way to control the viscosity of dispersed systems ig-or hard spheres, systems of all large or all small particles at
to change the size distribution. Often the goal is to lower thghe same volume fraction have the same viscosity, while
dispersion viscosity while maintaining a high volume frac- most other realistic colloidal interactions cause the viscosity
tion, as in ceramic processing. There have been many expeff the pure small particles to be higher. This type of theory is
mental studies of this effefl—7], some modeling8,9], and  also applicable to mixtures of colloidal particles and nonab-
a few simulations[10—12 which were limited to two- sorbing polymer.
dimensional systems. The primary focus has been on noncol-
loidal pa_rticles, but colloidal force_s ano_l Brownian motion Il. THEORETICAL MODELING
become important features as particle sizes decidaie
This paper applies thermodynamic and hydrodynamic ap- A numerically solvable theoretical description will relate
proximations developed previous|§4,15 to provide a mi- the suspension properties to the microstructure at the level of
croscopic description of the effect of mixing different sized pair correlations. The primary function characterizing the mi-
Brownian particles on the dispersion viscosity. For hard-crostructure is the pair correlation functiog;,(r) in the
sphere interaction potentials the variables affecting the visisotropic equilibrium state ang,,(r) in a nonisotropic
cosity are the total volume fractiog, size ratio\, and the sheared state. There is one of these functions for each pair of
fraction by volume of large particleX, . The questions of components in the system.
interest are as follows. When does mixing different sized Our approach considers a many-particle system sus-
particles lead to a minimum of viscosity? What relative frac-pended in a solvent, with viscosify, interacting through a
tion of large and small particles leads to the lowest viscositypairwise additive potentiakb,,(r). A rigorous approach
and how does this depend on total volume fraction and sizevould require large scale numerical simulation of the motion
ratio? How deep is the minimum in viscosity and how doesof a large number of particles coupled to the flow of fluid
this depth depend on the parameters? between them. Through appropriate self-consistent averaging
The most important question is the mechanism for thewe replace theN-body system by a representative pair of
decrease in viscosity. For noncolloidal particles the mechaparticles in a solvent, with viscosity).:$>u, interacting
nism is purely hydrodynamic in origin, while for smaller through a potential of mean forc&,,;. The solutions of
particles Brownian and interparticle forces also contributeequations describing this two-particle system vyield predic-
The goal of the theory is to distinguish these effects andions for the pair correlation function and the viscosity of the
compare Brownian particles and noncolloidal particles. suspension.
To focus on the three parameters identified above, this The self-consistent statistical averaging requires that the
properties of the effective medium be coupled to the solution
for the correlation functions of the pair of particles. In a
*Electronic address: lionberg@umich.edu multicomponent mixture this couples the pair correlation
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functions of the different sized particles together. The Rogers and Youn(RY) equation[31],

A. Equilibrium theory hap(r12) =exp(— ® 4, /K, T)
ab\112) = a

Recent work applying equilibrium statistical mechanics to
T exqfab(r)[hab(rlz) - Cab(r12)]) -1 _

mixtures of different sized colloidal particles has been moti-

vated by interest in locating a possible equilibrium phase x|1 fap(r) 1,
separation of large and small particles. The first theories of

mixtures of hard spherd46,17] predicted that hard spheres ©®

of different sizes would always mix. More current experi-

ments on colloid stability and phase separafid8-20, di-  iyes the HNC and PY solution with an adjustable param-

rect measurements of colloidal forded,22|, calculations of eter, o in f (r)=1—exp(—alo,y), chosen to force agree-

_expected depl_etion forces from both simulaticﬁas,zzﬂ and  ment between equations of state derived from the pressure
integral equation$25-27, and other thermodynamic mod- 4 compressibility.

eling [28,29 have suggested that the depletion forces can 5| the integral equations provide quantitatively correct
cause an entropically driven phase separation. results at small size ratios and low total volume fractions.
Exclusion of the small particles from the region betweentpay ingicate the shortcoming of the Asakura-Oosawa model
the large particles induces an effective force between thg,y"hregict a depletion force that is long ranged and oscil-
large: particles. This force is the potential of mean force,,ag petween attraction and repulsion forces as the separa-
$a, between the large particles and can be calculated frofjon changes. At larger size ratios and higher total volume

the distribution of the large particles, fractions, limitations of the closures become apparent and
they provide differing predictions of possible phase separa-
Gaa(r) =exp(— DIL/KT). (1) tioné_p gp p p p

For the PY closure there is an analytical solution for mix-
dpres of arbitrary numbers of particl¢d7]. However, for
ertain parameters this solution has regions wiigggr) is

Asakura and OosawigB0] first calculated this force for the
case where the small particles do not interact with each oth

and the concentration of large particles is dilute and the . . - .
ge p )flegatlve and thus unphysical. In these regions the equation

found of state can still be evaluated, however, we cannot use the
a, 3 1 r PY g(r) to calculate the potential of mean force. As a con-
<I>g‘af= —kTogl 1+ —|| 1+ —p+ —=p%|, p= . sequence of the negatiggr), which effectively reduces the
ap 4 16 aztay

density of the system, overlapping hard spheres will be less
2 likely and the PY equation predicts that hard spheres of dif-

This result indicates the attractive nature of the induced inf€rent sizes will always mix. The HNC closure never gives

teraction and suggests the possibility of an equilibrium phas@€9ativeg(r), however its numerical solution becomes dif-
separation. ficult at higher densities. The RY solution gives much better

For realistic colloidal systems where the small particles2dreement with equations of state from computer simulation
interact with each other and the large particles are at a nort higher densities, but also combines the limitations of the
dilute concentration, an accurate modeldgg(r) is required other closures. Its thermodynam_lcally consistent solutions
to invert Eq.(1). Integral equations can provide this informa- &€ not guaranteed to have positigér). For example, the
tion for a wide range of interparticle interactions. RY solutions presented in the work of Hansen and Biben

As for monodisperse systems, the starting point for inte[25,26 yield reasonable values for the equation of state, but

gral equation models is the Ornstein-Zernike equation, whict@/S0 include negative values g{r) in the region of the first
defines the direct correlation function,;,, through minimum. In contrast to the PY result, their RY solution

appears to show a limit of the stability of the homogeneous
phase, this indicates a phase transition for extreme sized
hab(r12):Cab(r12)+2 ncf Cac(r13)pc(ra2)dxs, (3) ratios.
¢ For this paper we use the RY closure to determine the
equilibrium structures. Our calculations are primarily for
noderate sized ratios because at higher densities we encoun-
(?;r negativeg(r) and thus, at these state points we are unable
to calculate a potential of mean force for use in computing a
é/_iscosity.

where h,,(r12) =pap(r12) — 1. For each pair of components
there is one equation and thus an equivalent number of a
ditional equationga closurgis required to allow solution for
all hgp.

The most common closure approximations are the Percu
Yevick (PY) equation

Nap(r12) = expl— P ap/KyT)[Nap(r12) —Cap(ri) ] =1 (4) , : _ _ o
As the particles are dispersed in a viscous fluid, interac-
and the hypernetted cha{RINC) equation tions of particles with fluid must be included in the model-
ing. The actual flow fields in the fluid depend on the location
hap(ri2) =exd — @ ,p /Ky T+ hap(ri2) —Cap(ri)]—1. (5)  of all the particles, forces, and applied flows present. To

B. Hydrodynamic functions
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compute this result for all configurations is not feasible, thus

we must consider the effect of the fluid averaged over an (C;'gw)z:E:—r{ -

ensemble of configurations. r
A theory for the microscopic dynamics requires a relation (14)

between the forces acting on particles and their velocity. For

an isolated particle, this relation is simple,

E-r

— B ,
r ab

rm-gE-r
—r3 Aupt

rr

and

[0}
U= po- KT (7)
kKT ' ~2 6wua’

r-e-r
fl By
with the dependence on the particle radius and solvent vis- V- ({Cap )2:E)=Wap 7
cosity closely related to the diffusion coefficient of an iso-

lated particle of radiug,D3. In concentrated suspensions, dAgp\r-E-r
the presence of the other particles reduces the velocity by a =| —3Aat BBab—rT 5
factor proportional to the short time self-diffusion coefficient r
of a particle of radiug, D3(¢), whereD3(¢)<Dyj, (15)
Da(#)
U= F. (8) ; . ;
kT Again, for two isolated particled,, andB,, are well tabu-

lated and asymptote at large separations to the isolated par-
The relative motion of a pair of particles is more complex,ticle limit, while at small separation lubrication forces pre-
even in the dilute limit it depends on the separation as vent relative motion of the pair.
For monodisperse suspensions at high concentrations, the
U, =Dgp- Fr, (90 most effective existing models for the hydrodynamic interac-
tion functions originated when Medina-Noyol87] and
with Brady [38] first recognized that the known values of the
short-time diffusion coefficient could be used to rescale the
rr
oo

results of dynamical theories that did not include hydrody-
The proportionality constar®},, is the sum of the diffusion

ro__ (o]
Dab=Dap (10 namic interactions. The success of this approximation is best
coefficients of particles of sizesandb,

rr
Gabr_z + Hab

understood in terms of the known asymptotic forms of the
hydrodynamic interaction functions. At large separations the
pair of particles moves independently and the function must
asymptote to the result of the single-particle averaging: for
d,+dy example,G(r)—DJ(¢) at larger. At small separation the
Dap=(Da+ Dg):m- (11)  solvent viscosity determines the relative motion through a
#=a lubrication analysis. An interpretation of these limits is that
the pair of particles feels an effective viscosity equal to the
solvent viscosity near contact and equal to the tracer particle

[32,33 and asymptote to unity at large separations, corre . S
sponding to the independent motion of isolated particles as if&/U€ at large separations. In between these limits the effec-
tive viscosity varies with separation, as indicated by the os-

Eq. (7), and vanishing at zero separation because of lubrica='~ ¥"~*" : . _ .
tion forces. This relative diffusivity can be measured usingCiiation in G(r). At high density the dominant effect is the

optical tweezers and video microscopg4,35 and is re- reduction in magnitude which is captured by the far-field

quired to interpret scattering measurements of the wavel@/ue. Brady's and Medina-Noyola's rescaling applies this

vector dependent diffusion coefficients in particle mixtures'@r-field result at all separations. Figure 1 shows a compari-
[36]. son of the far-fu_ald resultto a Stqke5|_an dynamics caI(_:uIatlon
We also require the relation between the velocity of al© t€st the quality of the approximation. Upon changing the
particle and the rate of strain tensé, externally applied to ~ concentration fromp=0 to $=0.3, the diffusion coefficient
the system. By definition the average velocity of a pamdedecrea_ses 'and the absolute difference between the far-fleld
must be that of the average flow at the position approximation and the exact resu_lt d(_acre_ase, explaining
much of the success of the approximation in concentrated
(U)y=E-x. (12)  suspensiong39]. Thus, we employ the far-field rescaling for
all further calculations
This must be true for all concentrations. However, the rela-
tive velocity of a pair of particles in a flow field does depend
on their separation and the suspension concentration via

For two isolated particle§s,, and H,, are well tabulated

1
0 r=5(d,+dy)
' oo ¥ D% L D2

1 r>§(da+db)

with
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12 . . . . . where P,(X1,X5) =n(X1)N(X,) p(riy). Additional thermody-
namic and hydrodynamic approximations for these condi-

== 'E' ':): """""""" tional averages are required to solve the mgdél.

. sfnﬁsgo_n i¢)=o.3) The modification of the equation presented above to treat
-_--_-:gzrr:g:igg fggg mixtures of different sized particles must recognize the dif-

- ferent pair potentialsp,;,, between each pairwise combina-

tion of particles in the system. For hard spheres this is not
complicated, but for other potentials the strength of the in-
teraction may depend on both the relative and absolute par-
ticle sizes. The pair potential gives rise to different distribu-
tion functions for each possible pair of particlgg,(r). To
generalize the monodisperse case, we derive a two-particle

0.8

G(r) os

0.4

0.2

> >3 3 33 4 43 > 53 6 equation for eaclp,(r),
rfa
IPab(r12)
FIG. 1. Exact results foG(r) are obtained from Stokesian dy- iT +V | pap(rin) (T r+<C;'§W)2:E)
namics simulation and plotted &t=0.0 and¢=0.3. The compatri-
son of the far-field prediction with these results shows a great im- 1
provement in the far-field approximation as the volume fraction + ﬁ<D;b>~[pab(r12)<F;b>2—Vp(r12)] =0.
increases. b
(20)
1 . _ .
1 r= E(da+ dy) These equations also require thermodynamic and hydrody-
A= B..=0 (16) namic closures, but in a multicomponent mixture the clo-
ab 0 ab— sures can couple the pair correlation functions of different
r>§(da+ dp) sized particles. For example, the conditional averages of the

interparticle forces now have the form

To apply the far-field rescaling to mixtures of different sized Py
particles we extend the dilute suspension mixing rule in Eq. Pan(Fan)2= ~PanV1Pan(r12)

(10) to 1
. . . -5 2 N f Pabd V1®Pac(r13)
Dan(¢)=[D3(é)+Dy(h)]. (17 ¢
—V,&p(rpg) JdXs, (21)

C. Nonequilibrium theory for weak flows

: . . . . which includes a sum over the all other types of particles in
To predict the viscosity, the integral equation approacl*the system.

must be extended to account for the distortion of the equilib- \va consider the three thermodynamic closures with the
rium structure due to the applied flow. The first attempt atpair approximation
using integral equations to account for the dynamics of bi-
modal dispersions was by OhtsuUig]. Our integral equation (FL),=—Vd,, (Pain (22)
approach begins with the integrati¢h4| of an N-particle
conservation equation over the positions of all but two parcompletely decoupling the set of conservation equations. The
ticles, to produce an equation for the pair distribution func-mean force approximatiof#0]
tion that accounts for interparticle, hydrodynamic, and
Brownian forces, (Fip)o=—VO®N=Kk TV In guy(r,#) (Mean Force

(23)
ap(rip)

+V-
at v

1
fl .
p(ri)(I-r+(C 0W>2-E)+kb_1-<Dr>'[p(r12) includes an equilibrium coupling between different sizes.
The integral closure,

X(F"),=Vp(rip]|=0. (18)

1
kap(r12)<Frab>2:Cab(r12)+ 2 g ncj [Cac(riz)hpe(rs)

I' is the velocity gradient tensor of an applied flow and the
rate of strain tensor is its symmetric part Bs 3(I'+T"). + Cpe(r2g)hac(rap) ]dxs, (24)

This equation includes conditional averages of interparticle ) I ) _
forces, (F'), and hydrodynamic interactiong,D'), and adds a self-consistent nonequilibrium coupling, but requires
(clowy,, " defined by another equation fo€,,,,

Can(r12) = = Pan(r12) V1®(r1p)

Patra (M =NN=1) [ APua-- ey, 09 o) Quslrzy) (ntegra), (29
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where 3
1 d—, df,, 6Hap —  —
= d—fzeab( d; —65) - r-—j(fab— 3Qub)

1
Q1195 2 e [Caclriaectrzn

ddgy [ dfap
+ Coclr 9ol s Txa. (26 ~Gap——=| —=~Qh
In a previous papdrl4] we showed that the integral approxi- o qom!
mation described perturbations of the equilibrium pair distri- — Do “T(1-A )_jb+w (30)
bution function, which are equivalent to the imposition of an D2p 7 dr o)

arbitrary pairwise additive external potenti@l’'°'(r). This

potential does not appear explicitly in the final equations anchnd boundary condition at theb overlap distanced,y,
at equilibrium, whend"®{(r)=0 the integral approximation

reduces to the standard HNC equilibrium closure. This for- df., 0
malism allows us to calculate the response of the equilibrium ab B —@Lb =—T(1-Aa), (31
structure to a weak flow and thus determine the low shear dr Dab

Newtonian viscosity of the suspension. S _ _
The total stress in a suspension can be separated intovdth dimensionless variables
hydrodynamic contributio®" and a thermodynamic contri-

bution 3". To leading order in shear rate the hydrodynamic — r — Dgfap
contribution represents an ensemble average over the equi- = Ly’ fap= L2
librium distribution function. Exact results from Batchelor, 0

and Green with renormalization of conditionally convergent

integrals, exist only t®(¢?) [41]. However, measurements _mf_q);nbf al _DSQ‘e‘xb — DgQzp
of the high frequency viscosity provide values of this contri- ab K, T ab | kT B Lok T
bution as

H_ ot . Lz'y kT

DS’ 0 37uly’
The thermodynamic stress

with L, the diameter of the largest particle.

1 . . _
T__ 1—A.Vd d When we employ the simple hydrodynamic approxima-
=3 aEE) nanbf ( o)1V PapPandr tion from Eq.(16) the equations simplify to

1 re T3
_Z = 1 d—[dfy 6 — _

2 kaaE,b nanbf Wabrz Papdr, 28 S 2( ar _aab) _r—_z(fab_ 2Qab)
is caused by the perturbation of the suspension microstruc- dd™ [ df.
ture from equilibrium by the applied flow. _—ab ( ib_j-'m)

For a weak shear flow, the perturbation of the pair disti- dr dr
bution from equilibrium has the form . —
=—Tr i (33)
_ rET () dr
Pan(r12) =Jap(r)| 1+ r—zfab(r) - (29)

with no-flux boundary condition at theb overlap distance
A solution for f,;, is required to determine the coefficient

between stress and strain rate. dfap DS _
For the integral closure expansion of the functi@n — —_|ab= r. (34
d D}
r ab( @)
mi w, VEIM , N .
Qap(r1) =Vo - Vo i+ —- —zQab(r) In the integral approximation these equations are coupled
roqr and thus require a complicated numerical scheme to find a

self-consistent solution. The mean-force approximation re-
5— m QL.(r) sults in independent conservation equations, which require a
r2| <ab numerical solution and input of the potential of mean force
from the equilibrium integral equations. For hard spheres,
is required, while for the other closur€s,=0. Substituting the pair approximation leads to an analytical solution.
these expansions into E€RO), leaves the final conservation For all the closures the viscosity of a hard-sphere suspen-
equation sion is related to the nonequilibrium structure through

+
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ke [n] 3

10 —

XL

FIG. 2. Examination of the thermodynamic contribution to the ~ FIG. 4. The viscosity for size ratio 3:1 as a function of volume
O(¢?) term in the expansion of the viscosity shows that in thefraction using the pair thermodynamic closure.
dilute limit the far-field hydrodynamic interactions lead to a viscos-

ity maximum. mum that increases with increasing size ratio. Exact two-
particle hydrodynamic interactions convert the maximum to
n. 72 DO 3 3 a minimum that deepens with the size ratio. We expect that
7= +— 2 ¢a¢b( ) (O) the quality of the far-field hydrodynamic approximation will
L ab(®) d increase with increasing density. The figures plot the viscos-
ity reduced via
X £ ab( dap) Gap( dap) 35
with the factorDg/D$,(¢) accounting for the reduced mo- @—l—[n](ﬁ 5
bility due to hydrodynamic interactions. This hydrodynamic kul 7]= K [,7]_ e (36)

approximation replaces the characteristic relative mobility at

low densitiesD3,, with the volume fraction dependent scale

DS,(9). to remove the terms that are independent of the particle size.
In Figs. 4—6 we use the far-field hydrodynamic approxi-

mation combined with various thermodynamic approxima-

tions, as in Fig. 2 this hydrodynamic approximation leads to

A. Viscosity of bimodal suspensions a viscosity maximum at low density where all of the thermo-

dynamic approximations are identical. Figure 4 shows that

We first calculate the viscosity of bimodal suspensions h | di h f I
with the three thermodynamic closures to test their applical '€ Palr closure predicts an increase in the viscosity for a
volume fractions and simply amplifies the trends in the dilute

bility to multicomponent mixtures. All thermodynamic clo-
limit. By including only the pair potential, it neglects the

sures reduce to the pair closure in the dilute limit where ﬁ t oth il he f d mi : i
exact calculations are possible, first performed by Wagne? eﬁt Od other p_?rr]t'c eshon the orge an m|s|ses Its cousp Ing
and Wouterson42]. Figures 2 and 3 show that with the to the density. The other thermodynamic closufEigs

far-field hydrodynamic interactions there is a viscosity maxi-2 and .6 include this coupling W.h'Ch. converts the V'SCO.S't.y
maximum for low volume fraction into the expected mini-

Ill. RESULTS

09

18

0.85
16

08 14

12

kr[n) 10

kg (n]

0.7

0.65

0.6

0.55 1 1 1 1

X

FIG. 3. Examination of the thermodynamic contribution to the
O(¢?) term in the expansion of the viscosity shows that exact FIG. 5. The viscosity for size ratio 3:1 as a function of volume
hydrodynamic interactions lead to a viscosity minimum. fraction using the mean force thermodynamic closure.
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kg (n] — 2
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150 o n -
6 [ ]
100 ° /
B ET . | eemed - e

X,

FIG. 6. The viscosity for size ratio 3:1 as a function of volume

. . . : FIG. 8. Comparison of integral closure at a size ratio of 1.67
fraction using the integral thermodynamic closure.

with the volume fraction dependence of the data of Rodriguez,
et al. [44].
mum at a higher volume fraction. The coupling to density

has tW.O manlfestathns. F|r_st, the viscosity decreases becauﬁﬁudes for the viscosity decrease and the shift in the location
replacing large particles with an equal volume of small par-

ticles i the f | hich all th I of the minimum with a change in the size ratio. The other
Icles Increases the free volume, which allows the Smalley, i, Fig. 8 show that the theory also predicts the change in

. ST . > arrﬁagnitude and minimum with increasing volume fraction. At
ticles. In the radial distibution functions this is seen as the[he highest volume fraction the predicted curves terminate

!carrgeer;sz:” ";?T(]jaﬁgalIéznlzsltlh?:ﬁ:gt'cogr:;g%%nfs 'nnC:_r:)ensm_':'when we can no longer solve the equilibrium integral equa-
u ving P lon functl N Jons. In this region the depletion forces are causing too

monqd|sp¢rsg system at the same volume fracpon. Secon rong an attraction between the large particles for the inte-
the viscosity increases because the small particles increa el equations to be successful
the viscosity of the medium and cause depletion forces tha Neither of the data sets corresponds exactly to the pre-

:ndu?e an sﬁsctlt\;]e z?tg]actu_)n be_ttwee_n_ Iarge_pa(ljmfles._ Tr('j%licted behavior for hard-spheres. Shikata’s data has several
ocation and depth of the VISCosity minimum 1S determine points where the viscosity of the mixed system is higher than

by a balanpe .betwe(_an these tWO. effects. . . the pure components and Rodriguez’s data have viscosities
A quantitative validation of this approach is provided by the pure components that are not equal at equal volume

comparison with two sets of ex_perimenf[al resylts for bimoda ractions as required for hard spheres. There are several pos-
hard-sphere colloidal suspensions. Shikad fixed the to- sible explanations for these observations. The inequality of

]Eal votlumedfract;_tmn am vsngq the Zompps(;tlt?]n ftoi tlwo ld'f' pure components could be caused by a nonhard-sphere inter-
erent sized ratios, while Rodriguéa4] varied the total vol- actions, with the consequence that smaller particles would

ume f“’f‘c“c.”ﬁ and composition with the size ratio flXeq'have a higher viscosity. Another possible cause of the differ-
Shikata’s silica particles deviate from hard-sphere behaviog . i viscosity is due to the shear rate dependence of the

as they show a difference in the viscosities of the pure Com\'/iscosity. Beyond a critical Pe the viscosity will begin to

ponents, but the data and theory in Fig. 7 show similar MaY%Gecrease with shear rate. This critical Pe decreases with vol-
ume fraction, thereby making experimental measurement of

16 | T T | the low shear viscosity difficult at high volume fraction. The
5 L m A=14 - i critical Pe also decreases with particle size. So at nonzero
® A=24 shear rates the viscosity for large particles will be less than

for small ones. For example, the data of Bender and Wagner
[45] for higher shear rates illustrate this effect as their vis-
cosity versus composition plots have a strong dependence on
shear rate. Both of these effects would tend to increase the
viscosity of the small particles relative to the large particles.
Other mechanisms that could cause systematic deviations
from predicted hard-sphere behavior include wall-particle in-

9 - . teractions, especially depletion forces that would preferential
by change the composition near the walls.

8 I ® | |
0 0.2 04 0.6 0.8 1
XL B. Comparison of colloidal and noncolloidal models
FIG. 7. Comparison of integral closure @t= 0.46 with the data There are several existing empirical approaches to mod-
of Shikata[43] for size ratios of 1.4 and 2.4. eling the viscosity of particle mixtures with most of them
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having been first developed for noncolloidal particles. Com- The first limitation of this model is that it does not predict
parison to the rigorous theory indicates that they have a limany dependence on particle size. D’haene and Mg®js
ited range of validity and illustrates important differencesrecognized that finite sized particles cannot access the entire
between colloidal and noncolloidal particles. free volume of - ¢, in the same way a continuum fluid can
RodrigueZ44] and Chang and PowdlL0] correlate their and so they added an additional adjustable parameter to aid
viscosities, from experiments and simulations, respectivelyin fitting their data for a size ratio of 6.4. As this model was
via the same form often used for the viscosity of monodis-developed for noncolloidal suspensions, it does not consider
perse suspensions depletion forces. As the size of the small particles decreases
s the force between large particles becomes larger and larger.
7% (P~ Pmax) 37 The consequence of this is that for noncolloidal systems in-
) ) ] i ) creasing the size ratio leads to a greater decrease in viscosity,
For bimodal mixtures, the maximum packing fracti@hax,  while in colloidal systems the maximum decrease in viscos-
is a function of the size ratio but not of total volume fraction. ity is limited by the increasing depletion forces. This is a
A consequence of this model is that it always predicts ggnsequence of a mathematical paradox of the hard-sphere
viscosity minimum and this minimum is always at the samemyodel. As the size ratio of a bimodal hard-sphere system
composition regardless of total volume fraction. This is i”'goes to infinity, the limit is not a monodisperse hard-sphere
consistent with theory and experiment which show that theyyspension. The hard-sphere solvent will always induce a
Iocat_lon ofa maximum or minimum depends on total V0|L_lmeforce between hard particles. Experimental colloidal systems
fraction. Thus, this model should only be considered valid atnat mimic hard-sphere systems do so because the properties
volume fractions near maximum packing. Another limitation of the solvent and particles are carefully tuned to give a
is that the determination of the maximum packing fraction isgglicate cancellation of van der Waals and excluded volume
difficult even for monodisperse hard-spheres and even mofgteractions.
amb_iguous for _par'gicles that are soft. Usually t_he value of Away to modify the approach of Farris to give the correct
maximum packing is chosen to fit the data and is not deteryenavior for colloidal systems with a large size ratio is to
mined mdgpendently. Our approqgh has the same b?hav'ehlculatenmono(m) in Eq. (41) using the potential of mean
near maximum packing and identifies the,.. with the di-  force induced by the solvent particles. This potential of mean
vergence of the osmotic pressure of a mixture of colloidakyce is computed from the integral equations with a fixed

particles. _ volume fraction of small spheres and the large spheres at
A different approach, first employed by Farfié6,47  infinite dilution [23,48.

treats the small particles as a continuum. This is obviously |, the regions rich in large particleX, =O(1), orrich in

o.nly valid forllarge' differences in' particle size. The expres-small particles Xs=0(1), a lower bound to the viscosity is
sion for the viscosity of a monodisperse suspension is the “invisible” particle limit

(XL P1)= Nmond d1— )= n(bL),

nsuspension: Trond B). 38)

Tsolvent

7(Xs, P1)= Pmond b1~ ¢L) = n( Ps), (42
Tmond @) is the function that describes the volume fraction

dependence of the relative viscosity of a monodisperse hard- o _
sphere suspension. This function is used twice. First, conivhere the minority component excluded volume disappears.

sider the small particles as the solvent for the large particlednteractions between the dilute particles increase the viscos-
ity from this limit according to their Huggins coefficient as

7(Xs~1,7)~ Dmond ) (1+[ 7] b+ K[ 7]1#D),

TOUSPESO b (39 (43
Msmall
where ¢, is small. At the other end, wherés is small, the
Second, we use E@38) for nsmar, equivalent equation is
Tsmall s (XL~ 1,¢1)= Nmond S (L+ [ 7] s+ k[ 7] $3).
“ = Tmon 1_—¢L ) (40) (44)

We obtaink,, from a solution to Eq(20) in the limit of the
density going to zero and with the pair potentfBl, re-
Slaced by the potential of mean fordge,;. As shown in Fig.

9 the potential of mean force between large particles changes
as the size ratio varies and has oscillations on the length
Tmond HL).- (41) scale of the smal_l particle size._There_ is an ir_wrease in the
strength of attraction for larger size ratios. In Fig. 10, for the

with the viscosity of the small particle phase calculated with
a volume fraction based on the space not occupied by th
large particles. Combining Eqé39) and (40) leaves

773uspension: bs
P Tmon 1- ¢,
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FIG. 9. The potentia| of mean force between two |arge partic|es FIG. 11. At several different values of the total volume fraCtiOn,

in a suspension of small particles @t=0.4 for size ratios of 3, 5, the Huggins coefficient for infinity dilute large particles shows a
and 10. minimum as a function of the size ratio.

inverse situation of small particles in a suspension of largélepletion force and the viscosity decrease due to an apparent
particles, the small particles feel a weaker potential with"eéduction in the volume fraction of the majority component.
long-range oscillations. The viscosity reduction when small

particles are added to pure large particles is larger than when C. Viscosity of polydisperse suspensions

large particles are added to pure small particles because there

are stronger depletion forces induced in the second case, in- To ap_ply our multicompo_nent theory 1o a po_lydisperse
dicated bykh>kﬁ . suspension we choose the size and number denspom-

Examination ofk; indicates the importance of depletion ponents to match the first2moments of the distribution of

forces in colloidal systems. The calculations in Fig. 11 are aﬁ|zes in the suspensig60]. We assume a Schultz distribu-

fixed total volume fraction and infinite dilution of the large on of sizes
particles. They show the Huggins coefficient has a minimum

with respect to size ratio. For large size ratios the Huggins

coefficient strongly increases, in accord with the expectation F(o)=
that an increase in the strength of attraction will increase the
viscosity[49]. In noncolloidal systems at extreme size ratios

where Eq.(43) would be valid, there would be no Huggins

coefficient correction from depletion forces and the viscositywhereo is the particle diameter an@r) its averagel’ is the

is free to decrease until the lower bound. In colloidal sys-gamma function, and= (1—s?)/s® with s being the stan-
tems, an attempt to reduce the viscosity by decreasing th@ard deviation of the particle size about the mean. The
size of the small particles will eventually begin to increaseSchultz distribution is convenient because its moments are
the viscosity at large enough size ratios. Whether a minimungoverned by a simple recurrence relation.

is observed will depend on the balance between stronger

t+1

t+1 O_t o
] s ) @

1.1

1 T T T T T T T 1 Integral equation
MW Simulation
----- ratio 3 0.9 i
--------- ratio 5
05 - ratio 10 ]
08 i
I,
0.7 |
0.6 |
05 _
04 1 1 1 1
1 ' ' ' ' ' . . 0 0.1 0.2 03 04 0.5
1 15 2 25 3 35 4 4.5 5 s
"'/ demalt

FIG. 12. Comparison of the pressure from the PY integral equa-
FIG. 10. The potential of mean force between two small par-tion [normalized on the monodisperse pressdig=TI1(s)/TI(s
ticles in a suspension of large particlesdat 0.4 for size ratios of =0)] at $=0.5 with that measured in simulation by Rastegial.
3, 5, and 10. [51].
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FIG. 14. Comparison of the viscosity from the mean force clo-

FIG. 13. Comparison of the viscosity from the integral closuresure as a function op for a range of polydispersities compared to
[normalized on the monodisperse viscosiy= 7(s)/n(s=0)] at  the measurements from de Kru#t al. [56], van der Werffet al.
¢=0.5 with that measured in simulation by Rastegial. [51]. [57], Mewis et al.[58], Shikata and Pears¢b9], Segreet al.[60],

and Pharet al. [54].

To validate the polydisperse model, we first compare theshould be lconsidered to most closely represent the viscosity
theory to Rastogi$51] simulations of charge-stabilized col- for monodisperse hard-spheres.
loids, which neglected hydrodynamic interactions. The pres-
sure in Fig. 12 shows excellent agreement between the simu-
lation and integral equation theory. The PY results depend
only on the first three moments of a continuous size distri- This paper illustrates that both the integral and mean force
bution and thus are exactly reproduced by our multicompoelosures capture the qualitative behavior of mixtures of dif-
nent approximation. For the viscosity in Fig. 13, we see venyferent sized particles. The simpler pair closure that succeeds
good agreement for low polydispersities with deviation be-for monodisperse mixtures gives quantitatively incorrect re-
tween theory and simulation at larger valuessoiindicating  sults, primarily because of the importance of three particle
that the viscosity has a more complicated dependence on tidepletion interactions in mixtures. A recent analysis of the
size distribution than the pressure. Thus the multicomponersmoluchowski approach to colloid dynamidl| using the
approximation is only practical for modest polydispersities. GENERIC formalism[62,63 demonstrated that the integral
Improvement of the approximation through the addition ofand mean force closures as used here are thermodynamically
more components to match more moments is not feasible aonsistent while the pair closure is not. The fact that the pair
the size ratio between the largest and smallest componentsosure predicts a nonphysical increase in viscosity and is
becomes too large for the existing numerical method. thermodynamically inconsistent indicates the utility of the

Figure 14 shows the prediction for hard-spheres with hy-GENERIC formalism.
drodynamic interactions compared with several sets of ex- Some of the features of bimodal mixtures predicted by the
perimental data. The experimental results appear to fall intthermodynamically consistent models are as folloyts.A
two classes of materials. The data sets with higher viscositiegiscosity minimum(as a function of compositionat low
are for PMMA particles that are monodisperse enough toolume fractions with full hydrodynamic interactions be-
form colloidal crystals at volume fractions greater thén comes a viscosity maximum when only far-field hydrody-
=0.5. The data sets with lower viscosities are a variety ofhamic interactions are include®) a transition from viscos-
materials but share the common feature that they are ndty maximum to viscosity minimunfagain as a function of
observed to form colloidal crystals and are believed to be oEomposition occurs at a total volume fraction of about
higher polydispersity. Kofke and Bolhuib2,53 suggest =0.4 when far-field hydrodynamic interactions are em-
that for hard-spheres there is critical polydispersity of abouployed; (3) the dependence of the composition at the mini-
10% beyond which the fluid will not crystallize. The poly- mum viscosity on particle size ratio and total volume frac-
dispersity of the PMMA systemib4] is clearly below this tion; (4) the magnitude of the viscosity minimum as a
value while the other systems could exceed this thresholdunction of total volume fraction, size ratio, and composi-
All the experimental systems claim to have a hard-spheré¢ion; and(5) the reduction of viscosity caused by polydisper-
interaction potential. Previously polydispersity has been sugsity.
gested 55] as a possible explanation for this division of the  The models for multicomponent mixtures can easily be
experimental data. Our calculations demonstrate this effecxtended to other interparticle potentials, but at present solu-
guantitatively and show that the difference between thes#ons are limited to size ratios and densities for which exist-
two classes of materials can be explained by the effect oing integral equations yield realistic values of the potentials
polydispersity on viscosity, as shown in the theoreticalof mean force. A direct calculation of the depletion forces
curves on the plot. The conclusion is that the PMMA datafrom simulation could provide the missing information.

IV. CONCLUSIONS
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