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Viscosity of bimodal and polydisperse colloidal suspensions

Robert A. Lionberger*
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

~Received 22 May 2001; published 21 June 2002!

We present a theoretical framework for the viscosity of bimodal and polydisperse colloidal suspensions. For
colloidal dispersions both interparticle forces between pairs of particles and many-particle effects such as
depletion forces can have a significant effect on rheology. As hydrodynamic interactions are also important for
colloidal systems, a theoretical description that includes hydrodynamic and thermodynamic interactions is
required. An integral equation theory for multicomponent systems accounts for the contribution of thermody-
namic interactions to the viscosity of dispersions. Introduction of small particles into a system of larger
particles causes depletion forces between the large particles that increase the viscosity, while replacing large
particles with an equal volume fraction of small particles increases the free volume in the system and decreases
the viscosity. The integral equations model both of these effects in concentrated suspensions and provide a
microscopic interpretation of free volume changes as changes in radial distribution functions. For a bimodal
mixture they predict a dependence of the viscosity on size ratio, composition, and total volume fraction.
Polydispersity is modeled by a small number of components whose sizes and weights are chosen to match the
moments of the size distribution. This theory predicts a reduction in viscosity due to polydispersity and
explains conflicting experimental measurement of the viscosity of hard-sphere colloids. Existing theoretical
approaches that neglect the multiparticle correlations, included through the integral equations, yield qualita-
tively incorrect results for the change in the viscosity relative to monodisperse systems.

DOI: 10.1103/PhysRevE.65.061408 PACS number~s!: 82.70.Dd, 83.80.Hj, 61.20.Gy
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I. INTRODUCTION

One way to control the viscosity of dispersed systems
to change the size distribution. Often the goal is to lower
dispersion viscosity while maintaining a high volume fra
tion, as in ceramic processing. There have been many ex
mental studies of this effect@1–7#, some modeling@8,9#, and
a few simulations@10–12# which were limited to two-
dimensional systems. The primary focus has been on non
loidal particles, but colloidal forces and Brownian motio
become important features as particle sizes decrease@13#.

This paper applies thermodynamic and hydrodynamic
proximations developed previously@14,15# to provide a mi-
croscopic description of the effect of mixing different siz
Brownian particles on the dispersion viscosity. For ha
sphere interaction potentials the variables affecting the
cosity are the total volume fractionf, size ratiol, and the
fraction by volume of large particlesXL . The questions of
interest are as follows. When does mixing different siz
particles lead to a minimum of viscosity? What relative fra
tion of large and small particles leads to the lowest visco
and how does this depend on total volume fraction and
ratio? How deep is the minimum in viscosity and how do
this depth depend on the parameters?

The most important question is the mechanism for
decrease in viscosity. For noncolloidal particles the mec
nism is purely hydrodynamic in origin, while for smalle
particles Brownian and interparticle forces also contribu
The goal of the theory is to distinguish these effects a
compare Brownian particles and noncolloidal particles.

To focus on the three parameters identified above,
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paper presents results for the hard-sphere potential only
though the theory is applicable to any interparticle potent
For hard spheres, systems of all large or all small particle
the same volume fraction have the same viscosity, wh
most other realistic colloidal interactions cause the visco
of the pure small particles to be higher. This type of theory
also applicable to mixtures of colloidal particles and nona
sorbing polymer.

II. THEORETICAL MODELING

A numerically solvable theoretical description will rela
the suspension properties to the microstructure at the leve
pair correlations. The primary function characterizing the m
crostructure is the pair correlation function:gab(r ) in the
isotropic equilibrium state andpab(r) in a nonisotropic
sheared state. There is one of these functions for each pa
components in the system.

Our approach considers a many-particle system s
pended in a solvent, with viscositym, interacting through a
pairwise additive potentialFab(r ). A rigorous approach
would require large scale numerical simulation of the mot
of a large number of particles coupled to the flow of flu
between them. Through appropriate self-consistent avera
we replace theN-body system by a representative pair
particles in a solvent, with viscosityhe f f@m, interacting
through a potential of mean force,Fm f . The solutions of
equations describing this two-particle system yield pred
tions for the pair correlation function and the viscosity of t
suspension.

The self-consistent statistical averaging requires that
properties of the effective medium be coupled to the solut
for the correlation functions of the pair of particles. In
multicomponent mixture this couples the pair correlati
©2002 The American Physical Society08-1
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functions of the different sized particles together.

A. Equilibrium theory

Recent work applying equilibrium statistical mechanics
mixtures of different sized colloidal particles has been mo
vated by interest in locating a possible equilibrium pha
separation of large and small particles. The first theories
mixtures of hard spheres@16,17# predicted that hard sphere
of different sizes would always mix. More current expe
ments on colloid stability and phase separation@18–20#, di-
rect measurements of colloidal forces@21,22#, calculations of
expected depletion forces from both simulations@23,24# and
integral equations@25–27#, and other thermodynamic mod
eling @28,29# have suggested that the depletion forces
cause an entropically driven phase separation.

Exclusion of the small particles from the region betwe
the large particles induces an effective force between
large particles. This force is the potential of mean for
Faa

m f , between the large particles and can be calculated f
the distribution of the large particles,

gaa~r !5exp~2Faa
m f/kT!. ~1!

Asakura and Oosawa@30# first calculated this force for the
case where the small particles do not interact with each o
and the concentration of large particles is dilute and th
found

Faa
m f52kTfsS 11

aa

ab
D S 11

3

4
r1

1

16
r3D , r5

r

aa1ab
.

~2!

This result indicates the attractive nature of the induced
teraction and suggests the possibility of an equilibrium ph
separation.

For realistic colloidal systems where the small partic
interact with each other and the large particles are at a n
dilute concentration, an accurate model forgaa(r ) is required
to invert Eq.~1!. Integral equations can provide this inform
tion for a wide range of interparticle interactions.

As for monodisperse systems, the starting point for in
gral equation models is the Ornstein-Zernike equation, wh
defines the direct correlation function,cab , through

hab~r12!5cab~r12!1(
c

ncE cac~r13!hbc~r32!dx3 , ~3!

wherehab(r12)5pab(r12)21. For each pair of component
there is one equation and thus an equivalent number of
ditional equations~a closure! is required to allow solution for
all hab .

The most common closure approximations are the Per
Yevick ~PY! equation

hab~r12!5exp~2Fab /kbT!@hab~r12!2cab~r12!#21 ~4!

and the hypernetted chain~HNC! equation

hab~r12!5exp@2Fab /kbT1hab~r12!2cab~r12!#21. ~5!
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The Rogers and Young~RY! equation@31#,

hab~r12!5exp~2Fab /kbT!

3F11
exp~ f ab~r !@hab~r12!2cab~r12!# !21

f ab~r ! G21,

~6!

mixes the HNC and PY solution with an adjustable para
eter,a in f ab(r )512exp(2a/sabr), chosen to force agree
ment between equations of state derived from the pres
and compressibility.

All the integral equations provide quantitatively corre
results at small size ratios and low total volume fractio
They indicate the shortcoming of the Asakura-Oosawa mo
and predict a depletion force that is long ranged and os
lates between attraction and repulsion forces as the sep
tion changes. At larger size ratios and higher total volu
fractions, limitations of the closures become apparent
they provide differing predictions of possible phase sepa
tions.

For the PY closure there is an analytical solution for m
tures of arbitrary numbers of particles@17#. However, for
certain parameters this solution has regions wheregab(r ) is
negative and thus unphysical. In these regions the equa
of state can still be evaluated, however, we cannot use
PY g(r ) to calculate the potential of mean force. As a co
sequence of the negativeg(r ), which effectively reduces the
density of the system, overlapping hard spheres will be l
likely and the PY equation predicts that hard spheres of
ferent sizes will always mix. The HNC closure never giv
negativeg(r ), however its numerical solution becomes d
ficult at higher densities. The RY solution gives much bet
agreement with equations of state from computer simula
at higher densities, but also combines the limitations of
other closures. Its thermodynamically consistent solutio
are not guaranteed to have positiveg(r ). For example, the
RY solutions presented in the work of Hansen and Bib
@25,26# yield reasonable values for the equation of state,
also include negative values ofg(r ) in the region of the first
minimum. In contrast to the PY result, their RY solutio
appears to show a limit of the stability of the homogeneo
phase, this indicates a phase transition for extreme s
ratios.

For this paper we use the RY closure to determine
equilibrium structures. Our calculations are primarily f
moderate sized ratios because at higher densities we enc
ter negativeg(r ) and thus, at these state points we are una
to calculate a potential of mean force for use in computin
viscosity.

B. Hydrodynamic functions

As the particles are dispersed in a viscous fluid, inter
tions of particles with fluid must be included in the mode
ing. The actual flow fields in the fluid depend on the locati
of all the particles, forces, and applied flows present.
8-2
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VISCOSITY OF BIMODAL AND POLYDISPERSE . . . PHYSICAL REVIEW E 65 061408
compute this result for all configurations is not feasible, th
we must consider the effect of the fluid averaged over
ensemble of configurations.

A theory for the microscopic dynamics requires a relat
between the forces acting on particles and their velocity.
an isolated particle, this relation is simple,

U5
Da

o

kT
F, Da

o5
kT

6pma
, ~7!

with the dependence on the particle radius and solvent
cosity closely related to the diffusion coefficient of an is
lated particle of radiusa,Da

o . In concentrated suspension
the presence of the other particles reduces the velocity
factor proportional to the short time self-diffusion coefficie
of a particle of radiusa, Da

s(f), whereDa
s(f),Da

o ,

U5
Da

s~f!

kT
F. ~8!

The relative motion of a pair of particles is more comple
even in the dilute limit it depends on the separation as

Ur5Dab
r
•Fr , ~9!

with

Dab
r 5Dab

o FGab

rr

r 2
1HabS d2

rr

r 2D G . ~10!

The proportionality constantDab
o is the sum of the diffusion

coefficients of particles of sizesa andb,

Dab
o 5~Da

o1Db
o!5

da1db

3pmdadb
. ~11!

For two isolated particlesGab and Hab are well tabulated
@32,33# and asymptote to unity at large separations, co
sponding to the independent motion of isolated particles a
Eq. ~7!, and vanishing at zero separation because of lubr
tion forces. This relative diffusivity can be measured us
optical tweezers and video microscopy@34,35# and is re-
quired to interpret scattering measurements of the wa
vector dependent diffusion coefficients in particle mixtur
@36#.

We also require the relation between the velocity o
particle and the rate of strain tensor,E, externally applied to
the system. By definition the average velocity of a parti
must be that of the average flow at the positionx,

^U&5E•x. ~12!

This must be true for all concentrations. However, the re
tive velocity of a pair of particles in a flow field does depe
on their separation and the suspension concentration via

Ur5E•r1^Cab
f low&2 :E, ~13!

with
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^Cab
f low&2 :E52r F rr•E•r

r 3
Aab1S d2

rr

r 2D • E•r

r
BabG ,

~14!

and

“•~^Cab
f low&2 :E!5Wab

r•E•r

r 2

5S 23Aab13Bab2r
dAab

dr D r•E•r

r 2
.

~15!

Again, for two isolated particlesAab andBab are well tabu-
lated and asymptote at large separations to the isolated
ticle limit, while at small separation lubrication forces pr
vent relative motion of the pair.

For monodisperse suspensions at high concentrations
most effective existing models for the hydrodynamic intera
tion functions originated when Medina-Noyola@37# and
Brady @38# first recognized that the known values of th
short-time diffusion coefficient could be used to rescale
results of dynamical theories that did not include hydrod
namic interactions. The success of this approximation is b
understood in terms of the known asymptotic forms of t
hydrodynamic interaction functions. At large separations
pair of particles moves independently and the function m
asymptote to the result of the single-particle averaging:
example,G(r )→Ds

o(f) at larger. At small separation the
solvent viscosity determines the relative motion through
lubrication analysis. An interpretation of these limits is th
the pair of particles feels an effective viscosity equal to
solvent viscosity near contact and equal to the tracer par
value at large separations. In between these limits the ef
tive viscosity varies with separation, as indicated by the
cillation in G(r ). At high density the dominant effect is th
reduction in magnitude which is captured by the far-fie
value. Brady’s and Medina-Noyola’s rescaling applies t
far-field result at all separations. Figure 1 shows a comp
son of the far-field result to a Stokesian dynamics calculat
to test the quality of the approximation. Upon changing t
concentration fromf50 to f50.3, the diffusion coefficient
decreases and the absolute difference between the far-
approximation and the exact result decrease, explain
much of the success of the approximation in concentra
suspensions@39#. Thus, we employ the far-field rescaling fo
all further calculations

Gab5
Dab

s ~f!

Dab
o H 0 r 5

1

2
~da1db!

1 r .
1

2
~da1db!

Hab5
Dab

s ~f!

Dab
o

,
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ROBERT A. LIONBERGER PHYSICAL REVIEW E65 061408
Aab5H 1 r 5
1

2
~da1db!

0 r .
1

2
~da1db!

Bab50. ~16!

To apply the far-field rescaling to mixtures of different siz
particles we extend the dilute suspension mixing rule in
~10! to

Dab
s ~f!5@Da

s~f!1Db
s~f!#. ~17!

C. Nonequilibrium theory for weak flows

To predict the viscosity, the integral equation approa
must be extended to account for the distortion of the equi
rium structure due to the applied flow. The first attempt
using integral equations to account for the dynamics of
modal dispersions was by Ohtsuki@8#. Our integral equation
approach begins with the integration@14# of an N-particle
conservation equation over the positions of all but two p
ticles, to produce an equation for the pair distribution fun
tion that accounts for interparticle, hydrodynamic, a
Brownian forces,

]p~r12!

]t
1“•Fp~r12!~G•r1^Cf low&2 :E!1

1

kbT
^Dr&•@p~r12!

3^Fr&22“p~r12!#G50. ~18!

G is the velocity gradient tensor of an applied flow and t
rate of strain tensor is its symmetric part asE5 1

2 (G1GT).
This equation includes conditional averages of interpart
forces, ^Fr&2 and hydrodynamic interactions,̂Dr&2 and
^Cf low&2, defined by

P2~x1 ,x2!^A&25N~N21!E APNdx3•••dxN , ~19!

FIG. 1. Exact results forG(r ) are obtained from Stokesian dy
namics simulation and plotted atf50.0 andf50.3. The compari-
son of the far-field prediction with these results shows a great
provement in the far-field approximation as the volume fract
increases.
06140
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where P2(x1 ,x2)5n(x1)n(x2)p(r12). Additional thermody-
namic and hydrodynamic approximations for these con
tional averages are required to solve the model@15#.

The modification of the equation presented above to tr
mixtures of different sized particles must recognize the d
ferent pair potentials,Fab , between each pairwise combina
tion of particles in the system. For hard spheres this is
complicated, but for other potentials the strength of the
teraction may depend on both the relative and absolute
ticle sizes. The pair potential gives rise to different distrib
tion functions for each possible pair of particles,pab(r). To
generalize the monodisperse case, we derive a two-par
equation for eachpab(r),

]pab~r12!

]t
1“•Fpab~r12!~G•r1^Cab

f low&2 :E!

1
1

kbT
^Dab

r &•@pab~r12!^Fab
r &22“p~r12!#G50.

~20!

These equations also require thermodynamic and hydro
namic closures, but in a multicomponent mixture the c
sures can couple the pair correlation functions of differ
sized particles. For example, the conditional averages of
interparticle forces now have the form

pab^Fab
r &252pab“1Fab~r12!

2
1

2 (
c

ncE pabc@“1Fac~r13!

2“2Fbc~r23!#dx3 , ~21!

which includes a sum over the all other types of particles
the system.

We consider the three thermodynamic closures with
pair approximation

^Fab
r &252“Fab ~Pair! ~22!

completely decoupling the set of conservation equations.
mean force approximation@40#

^Fab
r &252“Fab

m f5kbT“ ln gab~r ,f! ~Mean Force!
~23!

includes an equilibrium coupling between different size
The integral closure,

kbTp~r12!^Fab
r &25Cab~r12!1

1

2 (
c

ncE @Cac~r13!hbc~r32!

1Cbc~r23!hac~r31!#dx3 , ~24!

adds a self-consistent nonequilibrium coupling, but requi
another equation forCab ,

Cab~r12!52pab~r12!“1F~r12!

1hab~r12!Qab~r12! ~Integral!, ~25!

-

8-4
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where

Qab~r12!5
1

2 (
c

ncE @Cac~r13!hbc~r32!

1Cbc~r23!hac~r31!#dx3 . ~26!

In a previous paper@14# we showed that the integral approx
mation described perturbations of the equilibrium pair dis
bution function, which are equivalent to the imposition of
arbitrary pairwise additive external potentialF f ict(r). This
potential does not appear explicitly in the final equations a
at equilibrium, whenF f ict(r)50 the integral approximation
reduces to the standard HNC equilibrium closure. This f
malism allows us to calculate the response of the equilibr
structure to a weak flow and thus determine the low sh
Newtonian viscosity of the suspension.

The total stress in a suspension can be separated in
hydrodynamic contributionSH and a thermodynamic contri
bution ST. To leading order in shear rate the hydrodynam
contribution represents an ensemble average over the e
librium distribution function. Exact results from Batchelo
and Green with renormalization of conditionally converge
integrals, exist only toO(f2) @41#. However, measurement
of the high frequency viscosity provide values of this con
bution as

SH52h 8̀ E1O~E:E!. ~27!

The thermodynamic stress

ST5
1

2 (
a,b

nanbE ~12Aab!r“Fabpabdr

2
1

2
kbT(

a,b
nanbE Wab

rr

r 2
pabdr , ~28!

is caused by the perturbation of the suspension microst
ture from equilibrium by the applied flow.

For a weak shear flow, the perturbation of the pair dis
bution from equilibrium has the form

pab~r12!5gab~r !S 11
r•E•r

r 2
f ab~r !D . ~29!

A solution for f ab is required to determine the coefficie
between stress and strain rate.

For the integral closure expansion of the functionQ,

Qab~r12!5“Fab
m f2“Fab

121
r•E

r
•F rr

r 2
Qab

i ~r !

1S d2
rr

r 2D Qab
' ~r !G

is required, while for the other closuresQab50. Substituting
these expansions into Eq.~20!, leaves the final conservatio
equation
06140
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1

r̄ 2

d

dr̄
r̄ 2GabS d f̄ab

dr̄
2Q̄ab

i D 2
6Hab

r̄ 2
~ f̄ ab2 1

2 Q̄ab
' !

2Gab

dF̄ab
m f

dr̄
S d f̄ab

dr̄
2Q̄ab

i D
5

D0
o

Dab
o S 2 r̄ ~12Aab!

dF̄ab
m f

dr̄
1WabD , ~30!

and boundary condition at theab overlap distance,dab,

GabS d f̄ab

dr̄
2Q̄ab

i D 5
D0

o

Dab
o

r̄ ~12Aab!, ~31!

with dimensionless variables

r̄ 5
r

L0
, f̄ ab5

D0
o f ab

L0
2

,

F̄ab
m f5

Fab
m f

kbT
, Q̄ab

i 5
D0

oQab
i

L0kbT
, Q̄ab

' 5
D0

oQab
'

L0kbT
,

Pe5
L0

2g

D0
o

, D0
o5

kT

3pmL0
, g5~E:E!1/2, ~32!

with L0 the diameter of the largest particle.
When we employ the simple hydrodynamic approxim

tion from Eq.~16! the equations simplify to

1

r̄ 2

d

dr̄
r̄ 2S d f̄ab

dr̄
2Q̄ab

i D 2
6

r̄ 2
~ f̄ ab2 1

2 Q̄ab
' !

2
dF̄ab

m f

dr̄
S d f̄ab

dr̄
2Q̄ab

i D
52 r̄

D0
o

Dab
s ~f!

dF̄ab
m f

dr̄
, ~33!

with no-flux boundary condition at theab overlap distance

d f̄ab

dr̄
2Q̄ab

i 5
D0

o

Dab
s ~f!

r̄ . ~34!

In the integral approximation these equations are coup
and thus require a complicated numerical scheme to fin
self-consistent solution. The mean-force approximation
sults in independent conservation equations, which requi
numerical solution and input of the potential of mean for
from the equilibrium integral equations. For hard spher
the pair approximation leads to an analytical solution.

For all the closures the viscosity of a hard-sphere susp
sion is related to the nonequilibrium structure through
8-5
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h

m
5

h 8̀

m
1

72

5 (
ab

D0
o

Dab
s ~f!

fafbS L0

da
D 3S L0

db
D 3

3 f ab~dab!gab~dab!, ~35!

with the factorD0
o/Dab

s (f) accounting for the reduced mo
bility due to hydrodynamic interactions. This hydrodynam
approximation replaces the characteristic relative mobility
low densitiesDab

o with the volume fraction dependent sca
Dab

s (f).

III. RESULTS

A. Viscosity of bimodal suspensions

We first calculate the viscosity of bimodal suspensio
with the three thermodynamic closures to test their appl
bility to multicomponent mixtures. All thermodynamic clo
sures reduce to the pair closure in the dilute limit whe
exact calculations are possible, first performed by Wag
and Wouterson@42#. Figures 2 and 3 show that with th
far-field hydrodynamic interactions there is a viscosity ma

FIG. 2. Examination of the thermodynamic contribution to t
O(f2) term in the expansion of the viscosity shows that in t
dilute limit the far-field hydrodynamic interactions lead to a visco
ity maximum.

FIG. 3. Examination of the thermodynamic contribution to t
O(f2) term in the expansion of the viscosity shows that ex
hydrodynamic interactions lead to a viscosity minimum.
06140
t

s
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mum that increases with increasing size ratio. Exact tw
particle hydrodynamic interactions convert the maximum
a minimum that deepens with the size ratio. We expect t
the quality of the far-field hydrodynamic approximation w
increase with increasing density. The figures plot the visc
ity reduced via

kH@h#5

h0

m
212@h#f

f2
, @h#5

5

2
, ~36!

to remove the terms that are independent of the particle s
In Figs. 4–6 we use the far-field hydrodynamic appro

mation combined with various thermodynamic approxim
tions, as in Fig. 2 this hydrodynamic approximation leads
a viscosity maximum at low density where all of the therm
dynamic approximations are identical. Figure 4 shows t
the pair closure predicts an increase in the viscosity for
volume fractions and simply amplifies the trends in the dilu
limit. By including only the pair potential, it neglects th
effect of other particles on the force and misses its coup
to the density. The other thermodynamic closures~Figs. 5
and 6! include this coupling which converts the viscosi
maximum for low volume fraction into the expected min

-

t

FIG. 4. The viscosity for size ratio 3:1 as a function of volum
fraction using the pair thermodynamic closure.

FIG. 5. The viscosity for size ratio 3:1 as a function of volum
fraction using the mean force thermodynamic closure.
8-6
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mum at a higher volume fraction. The coupling to dens
has two manifestations. First, the viscosity decreases bec
replacing large particles with an equal volume of small p
ticles increases the free volume, which allows the sma
particles to access interstitial space inaccessible to large
ticles. In the radial distibution functions this is seen as
large-small and small-small correlation functions in the m
ture having smaller peaks than the correlation functions
monodisperse system at the same volume fraction. Sec
the viscosity increases because the small particles incr
the viscosity of the medium and cause depletion forces
induce an effective attraction between large particles. T
location and depth of the viscosity minimum is determin
by a balance between these two effects.

A quantitative validation of this approach is provided
comparison with two sets of experimental results for bimo
hard-sphere colloidal suspensions. Shikata@43# fixed the to-
tal volume fraction and varied the composition for two d
ferent sized ratios, while Rodriguez@44# varied the total vol-
ume fraction and composition with the size ratio fixe
Shikata’s silica particles deviate from hard-sphere beha
as they show a difference in the viscosities of the pure co
ponents, but the data and theory in Fig. 7 show similar m

FIG. 6. The viscosity for size ratio 3:1 as a function of volum
fraction using the integral thermodynamic closure.

FIG. 7. Comparison of integral closure atf50.46 with the data
of Shikata@43# for size ratios of 1.4 and 2.4.
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nitudes for the viscosity decrease and the shift in the loca
of the minimum with a change in the size ratio. The oth
data in Fig. 8 show that the theory also predicts the chang
magnitude and minimum with increasing volume fraction.
the highest volume fraction the predicted curves termin
when we can no longer solve the equilibrium integral eq
tions. In this region the depletion forces are causing
strong an attraction between the large particles for the in
gral equations to be successful.

Neither of the data sets corresponds exactly to the p
dicted behavior for hard-spheres. Shikata’s data has sev
points where the viscosity of the mixed system is higher th
the pure components and Rodriguez’s data have viscos
of the pure components that are not equal at equal volu
fractions as required for hard spheres. There are several
sible explanations for these observations. The inequality
pure components could be caused by a nonhard-sphere i
actions, with the consequence that smaller particles wo
have a higher viscosity. Another possible cause of the dif
ence in viscosity is due to the shear rate dependence o
viscosity. Beyond a critical Pe the viscosity will begin
decrease with shear rate. This critical Pe decreases with
ume fraction, thereby making experimental measuremen
the low shear viscosity difficult at high volume fraction. Th
critical Pe also decreases with particle size. So at nonz
shear rates the viscosity for large particles will be less th
for small ones. For example, the data of Bender and Wag
@45# for higher shear rates illustrate this effect as their v
cosity versus composition plots have a strong dependenc
shear rate. Both of these effects would tend to increase
viscosity of the small particles relative to the large particl
Other mechanisms that could cause systematic deviat
from predicted hard-sphere behavior include wall-particle
teractions, especially depletion forces that would preferen
by change the composition near the walls.

B. Comparison of colloidal and noncolloidal models

There are several existing empirical approaches to m
eling the viscosity of particle mixtures with most of the

FIG. 8. Comparison of integral closure at a size ratio of 1.
with the volume fraction dependence of the data of Rodrigu
et al. @44#.
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ROBERT A. LIONBERGER PHYSICAL REVIEW E65 061408
having been first developed for noncolloidal particles. Co
parison to the rigorous theory indicates that they have a
ited range of validity and illustrates important differenc
between colloidal and noncolloidal particles.

Rodriguez@44# and Chang and Powell@10# correlate their
viscosities, from experiments and simulations, respectiv
via the same form often used for the viscosity of monod
perse suspensions

h}~f2fmax!
22. ~37!

For bimodal mixtures, the maximum packing fraction,fmax,
is a function of the size ratio but not of total volume fractio
A consequence of this model is that it always predicts
viscosity minimum and this minimum is always at the sa
composition regardless of total volume fraction. This is
consistent with theory and experiment which show that
location of a maximum or minimum depends on total volum
fraction. Thus, this model should only be considered valid
volume fractions near maximum packing. Another limitati
is that the determination of the maximum packing fraction
difficult even for monodisperse hard-spheres and even m
ambiguous for particles that are soft. Usually the value
maximum packing is chosen to fit the data and is not de
mined independently. Our approach has the same beha
near maximum packing and identifies thefmax with the di-
vergence of the osmotic pressure of a mixture of colloi
particles.

A different approach, first employed by Farris@46,47#
treats the small particles as a continuum. This is obviou
only valid for large differences in particle size. The expre
sion for the viscosity of a monodisperse suspension is

hsuspension

hsolvent
5hmono~f!. ~38!

hmono(f) is the function that describes the volume fracti
dependence of the relative viscosity of a monodisperse h
sphere suspension. This function is used twice. First, c
sider the small particles as the solvent for the large partic

hsuspension

hsmall
5hmono~fL!. ~39!

Second, we use Eq.~38! for hsmall ,

hsmall

m
5hmonoS fS

12fL
D , ~40!

with the viscosity of the small particle phase calculated w
a volume fraction based on the space not occupied by
large particles. Combining Eqs.~39! and ~40! leaves

hsuspension

m
5hmonoS fS

12fL
Dhmono~fL!. ~41!
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The first limitation of this model is that it does not predi
any dependence on particle size. D’haene and Mewis@2#
recognized that finite sized particles cannot access the e
free volume of 12fL in the same way a continuum fluid ca
and so they added an additional adjustable parameter to
in fitting their data for a size ratio of 6.4. As this model w
developed for noncolloidal suspensions, it does not cons
depletion forces. As the size of the small particles decrea
the force between large particles becomes larger and la
The consequence of this is that for noncolloidal systems
creasing the size ratio leads to a greater decrease in visco
while in colloidal systems the maximum decrease in visc
ity is limited by the increasing depletion forces. This is
consequence of a mathematical paradox of the hard-sp
model. As the size ratio of a bimodal hard-sphere syst
goes to infinity, the limit is not a monodisperse hard-sph
suspension. The hard-sphere solvent will always induc
force between hard particles. Experimental colloidal syste
that mimic hard-sphere systems do so because the prope
of the solvent and particles are carefully tuned to give
delicate cancellation of van der Waals and excluded volu
interactions.

A way to modify the approach of Farris to give the corre
behavior for colloidal systems with a large size ratio is
calculatehmono(fL) in Eq. ~41! using the potential of mean
force induced by the solvent particles. This potential of me
force is computed from the integral equations with a fix
volume fraction of small spheres and the large sphere
infinite dilution @23,48#.

In the regions rich in large particles,XL>O(1), or rich in
small particles,XS>O(1), a lower bound to the viscosity i
the ‘‘invisible’’ particle limit

h~XL ,fT!>hmono~fT2fS!5h~fL!,

h~XS ,fT!>hmono~fT2fL!5h~fS!, ~42!

where the minority component excluded volume disappe
Interactions between the dilute particles increase the vis
ity from this limit according to their Huggins coefficient a

h~XS'1,fT!'hmono~fS!~11@h#fL1kH
L @h#fL

2!,
~43!

wherefL is small. At the other end, wherefS is small, the
equivalent equation is

h~XL'1,fT!'hmono~fL!~11@h#fs1kH
S@h#fS

2!.
~44!

We obtainkH from a solution to Eq.~20! in the limit of the
density going to zero and with the pair potentialF12 re-
placed by the potential of mean forceFm f . As shown in Fig.
9 the potential of mean force between large particles chan
as the size ratio varies and has oscillations on the len
scale of the small particle size. There is an increase in
strength of attraction for larger size ratios. In Fig. 10, for t
8-8
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inverse situation of small particles in a suspension of la
particles, the small particles feel a weaker potential w
long-range oscillations. The viscosity reduction when sm
particles are added to pure large particles is larger than w
large particles are added to pure small particles because
are stronger depletion forces induced in the second case
dicated bykH

L .kH
S .

Examination ofkH
L indicates the importance of depletio

forces in colloidal systems. The calculations in Fig. 11 are
fixed total volume fraction and infinite dilution of the larg
particles. They show the Huggins coefficient has a minim
with respect to size ratio. For large size ratios the Hugg
coefficient strongly increases, in accord with the expecta
that an increase in the strength of attraction will increase
viscosity@49#. In noncolloidal systems at extreme size rati
where Eq.~43! would be valid, there would be no Huggin
coefficient correction from depletion forces and the viscos
is free to decrease until the lower bound. In colloidal s
tems, an attempt to reduce the viscosity by decreasing
size of the small particles will eventually begin to increa
the viscosity at large enough size ratios. Whether a minim
is observed will depend on the balance between stron

FIG. 9. The potential of mean force between two large partic
in a suspension of small particles atf50.4 for size ratios of 3, 5,
and 10.

FIG. 10. The potential of mean force between two small p
ticles in a suspension of large particles atf50.4 for size ratios of
3, 5, and 10.
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depletion force and the viscosity decrease due to an appa
reduction in the volume fraction of the majority compone

C. Viscosity of polydisperse suspensions

To apply our multicomponent theory to a polydisper
suspension we choose the size and number density ofp com-
ponents to match the first 2p moments of the distribution o
sizes in the suspension@50#. We assume a Schultz distribu
tion of sizes

F~s!5F t11

^s& G t11 s t

G~ t11!
expS 2~ t11!

s

^s& D , ~45!

wheres is the particle diameter and̂s& its average,G is the
gamma function, andt5 (12s2)/s2 with s being the stan-
dard deviation of the particle size about the mean. T
Schultz distribution is convenient because its moments
governed by a simple recurrence relation.

FIG. 11. At several different values of the total volume fractio
the Huggins coefficient for infinity dilute large particles shows
minimum as a function of the size ratio.

FIG. 12. Comparison of the pressure from the PY integral eq
tion @normalized on the monodisperse pressure,P r5P(s)/P(s
50)# at f50.5 with that measured in simulation by Rastogiet al.
@51#.

s

-

8-9



th
l-
es
im
en
tr
po
er
e

t
e
s
o
e
e

hy
e
in
iti

t

o
n
o

ou
-

ol
e
u
e

fe
es
t
ca
t

sity

rce
if-
eds
re-
cle
e

l
ically
air
is

he

the

e-
y-

m-
ni-
c-
a

si-
r-

be
olu-
ist-
als
es

lo-
tore
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To validate the polydisperse model, we first compare
theory to Rastogi’s@51# simulations of charge-stabilized co
loids, which neglected hydrodynamic interactions. The pr
sure in Fig. 12 shows excellent agreement between the s
lation and integral equation theory. The PY results dep
only on the first three moments of a continuous size dis
bution and thus are exactly reproduced by our multicom
nent approximation. For the viscosity in Fig. 13, we see v
good agreement for low polydispersities with deviation b
tween theory and simulation at larger values ofs, indicating
that the viscosity has a more complicated dependence on
size distribution than the pressure. Thus the multicompon
approximation is only practical for modest polydispersitie
Improvement of the approximation through the addition
more components to match more moments is not feasibl
the size ratio between the largest and smallest compon
becomes too large for the existing numerical method.

Figure 14 shows the prediction for hard-spheres with
drodynamic interactions compared with several sets of
perimental data. The experimental results appear to fall
two classes of materials. The data sets with higher viscos
are for PMMA particles that are monodisperse enough
form colloidal crystals at volume fractions greater thanf
50.5. The data sets with lower viscosities are a variety
materials but share the common feature that they are
observed to form colloidal crystals and are believed to be
higher polydispersity. Kofke and Bolhuis@52,53# suggest
that for hard-spheres there is critical polydispersity of ab
10% beyond which the fluid will not crystallize. The poly
dispersity of the PMMA systems@54# is clearly below this
value while the other systems could exceed this thresh
All the experimental systems claim to have a hard-sph
interaction potential. Previously polydispersity has been s
gested@55# as a possible explanation for this division of th
experimental data. Our calculations demonstrate this ef
quantitatively and show that the difference between th
two classes of materials can be explained by the effec
polydispersity on viscosity, as shown in the theoreti
curves on the plot. The conclusion is that the PMMA da

FIG. 13. Comparison of the viscosity from the integral closu
@normalized on the monodisperse viscosity,h r5h(s)/h(s50)# at
f50.5 with that measured in simulation by Rastogiet al. @51#.
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should be considered to most closely represent the visco
for monodisperse hard-spheres.

IV. CONCLUSIONS

This paper illustrates that both the integral and mean fo
closures capture the qualitative behavior of mixtures of d
ferent sized particles. The simpler pair closure that succe
for monodisperse mixtures gives quantitatively incorrect
sults, primarily because of the importance of three parti
~depletion! interactions in mixtures. A recent analysis of th
Smoluchowski approach to colloid dynamics@61# using the
GENERIC formalism@62,63# demonstrated that the integra
and mean force closures as used here are thermodynam
consistent while the pair closure is not. The fact that the p
closure predicts a nonphysical increase in viscosity and
thermodynamically inconsistent indicates the utility of t
GENERIC formalism.

Some of the features of bimodal mixtures predicted by
thermodynamically consistent models are as follows.~1! A
viscosity minimum~as a function of composition! at low
volume fractions with full hydrodynamic interactions b
comes a viscosity maximum when only far-field hydrod
namic interactions are included;~2! a transition from viscos-
ity maximum to viscosity minimum~again as a function of
composition! occurs at a total volume fraction of aboutf
50.4 when far-field hydrodynamic interactions are e
ployed; ~3! the dependence of the composition at the mi
mum viscosity on particle size ratio and total volume fra
tion; ~4! the magnitude of the viscosity minimum as
function of total volume fraction, size ratio, and compo
tion; and~5! the reduction of viscosity caused by polydispe
sity.

The models for multicomponent mixtures can easily
extended to other interparticle potentials, but at present s
tions are limited to size ratios and densities for which ex
ing integral equations yield realistic values of the potenti
of mean force. A direct calculation of the depletion forc
from simulation could provide the missing information.

FIG. 14. Comparison of the viscosity from the mean force c
sure as a function off for a range of polydispersities compared
the measurements from de Kruiffet al. @56#, van der Werffet al.
@57#, Mewis et al. @58#, Shikata and Pearson@59#, Segre´ et al. @60#,
and Phanet al. @54#.
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